Baire category properties of topological groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Baire Category Theorem in Products of Linear Spaces and Topological Groups

A space is a Bake space if the intersection of countably many dense open sets is dense. We show that if X is a non-separable completely met&able linear space (pathconnected abelian topological group) then X contains two linear subspaces (subgroups) E and F such that both E and F are Baire but E x F is not. If X is a completely met&able linear space of weight K, then X is the direct sum E@F of t...

متن کامل

Full groups of minimal homeomorphisms and Baire category methods

We study full groups of minimal actions of countable groups by homeomorphisms on a Cantor space X, showing that these groups do not admit a compatible Polish group topology and, in the case of Z-actions, are coanalytic nonBorel inside Homeo(X). We point out that the full group of a minimal homeomorphism is topologically simple. We also study some properties of the closure of the full group of a...

متن کامل

Category of $H$-groups

‎This paper develops a basic theory of $H$-groups‎. ‎We‎ ‎introduce a special quotient of $H$-groups and‎ ‎extend some algebraic constructions of topological groups to the category‎ ‎of H-groups and H-maps and then present a functor from this category to the category of quasitopological groups‎.

متن کامل

The Baire Theory of Category

The Baire theory of category, which classifies sets into two distinct categories, is an important topic in the study of metric spaces. Many results in topology arise from category theory; in particular, the Baire categories are related to a topological property. Because the Baire Category Theorem involves nowhere dense sets in a complete metric space, this paper first develops the concepts of n...

متن کامل

On the Baire Category Theorem

Let T be a topological structure and let A be a subset of the carrier of T . Then IntA is a subset of T . Let T be a topological structure and let P be a subset of the carrier of T . Let us observe that P is closed if and only if: (Def. 1) −P is open. Let T be a non empty topological space and let F be a family of subsets of T . We say that F is dense if and only if: (Def. 2) For every subset X...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Visnyk Lvivskogo Universytetu. Seriya Mekhaniko-Matematychna

سال: 2019

ISSN: 2078-3744

DOI: 10.30970/vmm.2018.86.071-076